Pentavalent symmetric graphs admitting transitive non-abelian characteristically simple groups
نویسندگان
چکیده
Let Γ be a graph and let G be a group of automorphisms of Γ. The graph Γ is called G-normal if G is normal in the automorphism group of Γ. Let T be a finite non-abelian simple group and let G = T l with l ≥ 1. In this paper we prove that if every connected pentavalent symmetric T -vertex-transitive graph is T -normal, then every connected pentavalent symmetric G-vertex-transitive graph is G-normal. This result, among others, implies that every connected pentavalent symmetric G-vertextransitive graph is G-normal except T is one of 57 simple groups. Furthermore, every connected pentavalent symmetric G-regular graph is G-normal except T is one of 20 simple groups, and every connected pentavalent G-symmetric graph is G-normal except T is one of 17 simple groups.
منابع مشابه
Normal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number
In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.
متن کاملOn Cubic Graphs Admitting an Edge-Transitive Solvable Group
Using covering graph techniques, a structural result about connected cubic simple graphs admitting an edge-transitive solvable group of automorphisms is proved. This implies, among other, that every such graph can be obtained from either the 3-dipole Dip3 or the complete graph K4, by a sequence of elementary-abelian covers. Another consequence of the main structural result is that the action of...
متن کاملClassifying pentavalnet symmetric graphs of order $24p$
A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.
متن کاملArc-transitive Pentavalent Graphs of Order 4pq
This paper determines all arc-transitive pentavalent graphs of order 4pq, where q > p > 5 are primes. The cases p = 1, 2, 3 and p = q is a prime have been treated previously by Hua et al. [Pentavalent symmetric graphs of order 2pq, Discrete Math. 311 (2011), 2259-2267], Hua and Feng [Pentavalent symmetric graphs of order 8p, J. Beijing Jiaotong University 35 (2011), 132-135], Guo et al. [Pentav...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 341 شماره
صفحات -
تاریخ انتشار 2018